Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems

Haifeng Shi,*† Wu Ge,‡§ Hyuntaek Oh,∥ Sean M. Pattison,♦ Jacob T. Huggins,‡ Yeshayahu Talmon,¶ David J. Hart,† Srinivasa R. Raghavan,* and Jacques L. Zakin*‡

†Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry and Biochemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
§Analytical Sciences, Mondelēz International, 200 Deforest Avenue, East Hanover, New Jersey 07936, United States
∥Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
¶Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742-2111, United States

ABSTRACT: A photoresponsive micellar solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can be reversibly switched between a drag reduction (DR) mode and an efficient heat transfer (EHT) mode by light irradiation. The DR mode is advantageous during fluid transport, and the EHT mode is favored when the fluid flows through heat exchangers. This smart fluid is an aqueous solution of cationic surfactant oleyl bis(2-hydroxyethyl)methyl ammonium chloride (OHAC, 3.4 mM) and the sodium salt of 4-phenylazo benzoic acid (ACA, 2 mM). Initially, ACA is in a trans configuration and the OHAC/ACA solution is viscoelastic and exhibits DR (of up to 80% relative to pure water). At the same time, this solution is not effective for heat transfer. Upon UV irradiation, trans-ACA is converted to cis-ACA, and in turn, the solution is converted to its EHT mode (i.e., it loses its viscoelasticity and DR) but it now has a heat-transfer capability comparable to that of water. Subsequent irradiation with visible light reverts the fluid to its viscoelastic DR mode. The above property changes are connected to photoinduced changes in the nanostructure of the fluid. In the DR mode, the OHAC/trans-ACA molecules assemble into long threadlike micelles that impart viscoelasticity and DR capability to the fluid. Conversely, in the EHT mode the mixture of OHAC and cis-ACA forms much shorter cylindrical micelles that contribute to negligible viscoelasticity and effective heat transfer. These nanostructural changes are confirmed by cryo-transmission electron microscopy (cryo-TEM), and the photoisomerization of trans-ACA and cis-ACA is verified by 1H NMR.

1. INTRODUCTION

Some cationic surfactants in the presence of organic counterions self-assemble into threadlike micelles (TLMs) in aqueous solutions.1,2 These TLMs, resembling polymer molecules, entangle with each other and thereby impart non-Newtonian behavior to the fluid, such as viscoelasticity,3,4 flow birefringence,5,6 and shear-induced structure.5,7,8 One striking characteristic of TLM solutions is their drag reduction (DR) behavior, which means that these fluids have significantly lower pressure loss in turbulent flow compared to water.9 The %DR, defined as the reduction in drag in the presence of TLMs relative to pure water, can reach 80% or more.10–12 This remarkable reduction in pressure loss translates to lower energy requirements for pumping fluids in recirculating systems.

A promising application of DR fluids is in district heating/cooling systems (DHCs)9,11–15 in which hot or chilled water is recirculated. DHCs provide heated or chilled water from a central station to buildings in a district for heating or for air conditioning. With centralized equipment, such systems can achieve efficiencies by eliminating furnaces, boilers, and air conditioners in each building in a district. DHCs can utilize many kinds of energy sources from coal to geothermal, from natural gas to biomass. This flexibility makes DHCs more competitive in a time of increasingly expensive fuels.9,16 Currently, DHCs are widely used in Europe, Japan, and Korea and are attracting increased interest in the United States.16 The energy consumption for pumping water usually takes up about 15% of the entire energy cost of a DHC.17 The pumping energy consumption can be reduced by using a drag-reducing water solution as a substitute for water. However, drag-reducing fluids have a reduced heat-transfer capability compared to that of water, and the %HTR (reduction in heat transfer relative to water) is usually a little higher than the %DR.18–20 Therefore, it is of practical importance to enhance the heat-transfer capability of the drag-reducing solution in the platforms or buildings of the district.
heat exchangers while maintaining the DR capability in the rest of the DHCs.

One advantage of surfactant-based (i.e., TLM-containing) DR solutions is that they regain their DR effectiveness after mechanical degradation when passing through pumps, whereas polymer-based DR solutions become permanently degraded by the shearing action of the pump. In TLM-based drag-reducing flows, suppressed velocity fluctuations in the radial direction and a reduced frequency of turbulent bursts have been observed. These reduced turbulent characteristics are caused by the interaction between TLMs and the solvent. Long TLMs damp turbulent eddies, and their alignment along the flow suppresses fluid movement in the direction normal to the flow. The reduced turbulence results in reduced heat transfer in the radial direction. To enhance the heat transfer at the heat exchanger, the TLMs must be destroyed or the turbulence must be intensified. Mechanical methods to disrupt the TLMs include in-flow mechanical devices such as helical pipes, wire meshes, static mixers at the heat exchanger entrance, and vortex generators. The reduced turbulence results in reduced heat transfer in the radial direction. To enhance the heat transfer at the heat exchanger, the TLMs must be destroyed or the turbulence must be intensified. Mechanical methods to disrupt the TLMs include in-flow mechanical devices such as helical pipes, wire meshes, static mixers at the heat exchanger entrance, and vortex generators. However, all of these methods directly interfere with fluid flow, resulting in significant pressure losses. Alternatively, external stimuli have been studied to intensify turbulence in the heat exchanger. Qi et al. used ultrasonic energy to externally enhance heat transfer, but this method was only partially effective and required a large energy cost.

In a recent study, we proposed the use of light irradiation as an external stimulus to switch between modes of drag reduction (DR) and enhanced heat transfer (EHT) in TLM-based fluids. The concept for the application of this photoswitchable fluid is shown in Scheme 1. At the entrance to the heat exchanger, the fluid is irradiated by a light source to alter the molecular configuration of the surfactant/counterion in such a way that the TLMs are transformed into much shorter structures. The resulting fluid becomes nonviscoelastic and hence non-drag-reducing. At the same time, its waterlike behavior ensures an enhanced heat-transfer (EHT) capability. At the exit of the heat exchanger, a different light source is used to restore the original configuration of the surfactant/counterion, thus regenerating TLMs and giving the fluid its DR capability. This concept is based on the fact that the molecular geometry of the surfactant and counterion dictates the formation of TLMs or other micellar structures.

Although many photosresponsive surfactant systems have been reported in the literature, few are based on low-cost or commercially available components. In our previous study, we used a low-cost photosresponsive system originally developed by Ketner et al. made of a long-tailed cationic surfactant with the organic counterion trans-ortho-methoxycinamic acid (trans-OMCA). The attractive feature of this system is that trans-OMCA is inexpensive and commercially available. The surfactant and trans-OMCA solution had TLMs (and thus DR properties). Upon UV irradiation, trans-OMCA was irreversibly isomerized to cis-OMCA, causing the fluid to lose its TLMs and hence its viscoelasticity. Thereby, the fluid could be switched from a DR mode to an EHT mode. The DR could not be regained, however, because the counterion could not be photosomerized in the reverse direction.

In the present work, we have improved our earlier design by using a reversibly photoswitchable organic counterion, viz., 4-phenylazo benzoic acid (ACA). Azobenzene derivatives are well known to undergo reversible photoisomerization. We draw on recent work by Raghavan and co-workers who have reported a series of fluids based on ACA that exhibit dramatic, reversible changes in fluid viscosity. In that study, the surfactant used was erucyl bis(2-hydroxyethyl)methyl ammonium chloride (EHAC), a cationic surfactant with an unsaturated C₂₂ tail. Here we employ a related cationic surfactant, oleyl bis(2-hydroxyethyl)methyl ammonium chloride (OHAC), which has an unsaturated C₁₈ tail. Both EHAC and OHAC are commercially available at low cost, and ACA is also commercially available, although somewhat expensive. However, ACA is relatively easy to synthesize, and we have done so for this study. In turn, we have been able to prepare OHAC/ACA fluids in the large quantities (6 L) required for laboratory experiments in a recirculation loop.

We select OHAC over EHAC as the cationic surfactant for two reasons. First, the EHAC/ACA system requires a relatively high concentration (40 mM/20 mM, typically) in order to show significant changes in rheological properties induced by light irradiation. But for large-scale applications such as DHCs, it is of practical importance to have the additive concentration as low as possible. Second, our preliminary experiments showed that the UV-irradiated EHAC/ACA solution lost its viscoelasticity, and thus its drag reduction, only a few minutes after its was pumped in our recirculation system. This is probably due to the EHAC molecule’s bulkier structure, which requires a longer time to reassemble with ACA than OHAC. We show that the OHAC/ACA solution, at the low concentration of 3.4 mM/2 mM, is drag-reducing with ACA in the trans configuration and can be switched between DR and EHT modes using UV and visible light, respectively, as indicated in Scheme 1. Thus, this fluid is ideal for recirculating DHCs because it saves pumping energy during flow and provides good heat transfer at the heat exchangers.

2. EXPERIMENTAL SECTION

2.1. Materials and Sample Preparation.

The surfactant used in this study was donated by Akzo Nobel; its commercial name is Ethoquad O/12 PG. The commercial product contains alkyl bis(2-hydroxyethyl)methyl ammonium chlorides (82 wt %) with propylene glycol (18 wt %) as the solvent. The alkyl groups consist of about 82% oleyl (i.e., unsaturated C₁₈), 12% saturated C₁₆, 4% saturated C₁₄, and 1% saturated C₁₀. We denote the surfactant by the major component, viz., oleyl bis(2-hydroxyethyl)methyl ammonium chloride (OHAC, Scheme 2). The counterion, ACA (purity >99%), was synthesized from p-aminobenzoic acid (99%, Alfa Aesar) and nitrosobenzene.
(97%, Sigma-Aldrich) and purified by recrystallization. In the initial state, ACA is mostly in the trans configuration.

The OHAC/ACA solutions in small quantities were prepared by mixing the two compounds in water using magnetic stirrers. Samples were stirred overnight before rheological and other analytical measurements were made. Large quantities of solutions for drag reduction and heat-transfer experiments were prepared by stirring the solution in a bucket for 8 h at room temperature with a high-shear disperser (Janke & Hunkel IKA Ultra-Turrax SD-45). The solution pH was neutralized using sodium hydroxide. All of the solutions were well covered during preparation and storage to minimize exposure to light.

2.2. Light Irradiation. A 100 W Black-Ray long-wave UV lamp (broad band centered at 365 nm) and a 15 W LED lamp (radiation peaked at 450 nm) were used to irradiate samples. For UV−vis, rheology, cryo-TEM, and 1H NMR measurements, 10 mL of a sample solution was placed in a Petri dish and irradiated for 30 min. For DR and heat-transfer experiments, 6 L of solution was divided into 12 batches of 500 mL. Each batch was held in a crystallizing dish and was irradiated with stirring for 3 h. To minimize isomerization after irradiation, each batch was covered and placed in a −20 °C freezer as soon as irradiation was completed. The day after irradiation and freezing, DR and heat-transfer measurements were made on irradiated samples.

2.3. Rheological Measurements. Shear viscosity (η) and the first normal stress difference (N1) were measured with an ARES rheometer (TA Instruments) with a 50 mm cone-and-plate tool (0.02 rad cone angle and 0.056 mm gap) over a range of shear rates. Measured N1 readings were corrected for inertial effects according to the following relation:

\[N_1^{\text{corrected}} = N_1^{\text{measured}} + 0.15\rho \omega^2 R^2 \]

where \(\rho \) is the density of the solution, \(\omega \) is the angular velocity, and \(R \) is the radius of the cone.

2.4. UV−Vis Spectroscopy and Cryo-TEM. Sample solutions for UV−vis spectra were first irradiated and then diluted 100-fold. UV−vis spectra were collected at room temperature on a Genesys 6 UV−vis spectrophotometer (Thermo Electron Corporation). Samples for cryo-TEM imaging were prepared and frozen at Ohio State University and shipped, with dry ice, to the Technion Laboratory for Electron Microscopy of Soft Matter, where cryo-TEM imaging was performed after the samples thawed. Because of this process, cryo-TEM images were taken a few days after sample preparation and after freezing and thawing. Details of cryo-TEM sample preparation have been described elsewhere.

2.5. 1H NMR. NMR samples were prepared and irradiated in deuterium oxide instead of H2O. NaOD was used to adjust the pH. Experiments were performed within 3 h after irradiation at ambient temperature with a Bruker DPX 400 MHz NMR spectrometer in the Department of Chemistry at The Ohio State University.

2.6. Drag Reduction and Heat-Transfer Reduction. The percent drag reduction (%DR) is defined as

\[\%\text{DR} = \frac{f_{\text{water}} - f}{f_{\text{water}}} \times 100\% \]

where \(f \) is the friction factor defined as

\[f = \frac{\Delta P}{2\rho LV^2} \]

where \(\Delta P \) is the pressure drop across the test section of length \(L \), \(D \) is the inner diameter of the tube, \(\rho \) is the density of the solution, and \(V \) is the mean flow velocity.

The percent heat-transfer reduction (%HTR) is defined as

\[\%\text{HTR} = \frac{Nu_{\text{water}} - Nu}{Nu_{\text{water}}} \times 100\% \]

where \(Nu \) is the Nusselt number.

The modified Wilson plot method was used to calculate the Nu of the solution.33 DR and heat-transfer experiments were carried out on a 25-m-long recirculation system with a 10.2 mm inner diameter and a 6 L volumetric capacity. Details of the experiments and the recirculation system have been described elsewhere.

3. RESULTS AND DISCUSSION

Reversible photoisomerization of ACA in the presence of OHAC was investigated using UV−vis spectroscopy and 1H NMR. The resulting shape of micelles in solution was studied by cryo-TEM, and the rheological properties of the solution were examined by rheometry. Finally, the effects of this reversibility on DR and HTR in a large-scale recirculation system were also studied.

3.1. UV−Vis Spectra. To verify the reversible photoisomerization between trans-ACA and cis-ACA by light irradiation, UV−vis spectra (Figure 1) were obtained for the solution of 0.034 mM OHAC + 0.02 mM trans-ACA for a fresh sample (black), after UV irradiation (green), after visible light irradiation (blue), and after a second UV irradiation (red).

![Figure 1. UV−vis spectra of 0.034 mM OHAC + 0.02 mM trans-ACA](image-url)
The fresh sample has increasing mM OHAC + 2 mM ACA after UV and visible light irradiation. N almost coinciding with that of the fresh solution, indicating that irradiation with visible light, UV irradiation turns off the typical elastic response. To 50 s across the entire shear-rate range. In the shear-rate range of 30 to 50 s, shear thickening in the shear-rate range of 30 to 50 s decreased to essentially zero in the shear-rate range of 1 to 1000 s⁻¹. This decrease in N₁ confirms that UV irradiation turns off the viscoelasticity of the solution. After irradiation with visible light, N₁ again increases with shear rate, almost coinciding with that of the fresh solution, indicating that N₁ is restored by visible light irradiation. A second UV irradiation following the visible light irradiation again reduces N₁ to essentially zero in the shear-rate range of 1 to 1000 s⁻¹.

Figure 2b shows the steady-shear viscosity η versus shear rate at 25 °C. Although the fresh solution has shear-thinning behavior over the entire shear-rate range, it also shows modest shear thickening in the shear-rate range of 30 to 50 s⁻¹. This is induced by shear-induced structures (SIS), typical of TLMs. UV irradiation reduces the shear viscosity across the entire shear-rate range. In the shear-rate range of 30 to 50 s⁻¹, negative values were measured (not shown). This was because the torque decreased to extremely low values that are below the limit of the rheometer’s torque sensor. After visible light irradiation, the shear viscosity was restored to that of the fresh solution. A second UV irradiation reduced the shear viscosity again. All of the data in Figure 2 show that the viscoelasticity of OHAC/ACA solutions can be reversibly tuned by light irradiation at different wavelengths.

Figure 2. (a) Effects of UV and visible light irradiation on N₁ and (b) the shear viscosity of a 3.4 mM OHAC + 2 mM ACA solution at 25 °C. (□, fresh; ●, UV; △, UV followed by visible light; +, UV and visible light followed by UV). The shear viscosity data for solutions after UV irradiation in the shear-rate range of 10 to 50 s⁻¹ were negative because of the limited accuracy of the torque sensor.

3.3. Cryo-TEM. To observe the changes in solution structure directly, cryo-TEM images were taken of fresh samples and samples after UV and visible light irradiation. Figure 3a confirms that TLMs are present in the fresh 3.4 mM OHAC + 2 mM ACA sample. The TLMs are long and extend across the entire image. After UV irradiation, only shorter TLMs and spherical micelles are observed in Figure 3b. Finally, Figure 3c shows that long TLMs have reassembled after visible light irradiation. These observations perfectly correlate with the rheological data (i.e., the presence of TLMs leads to a viscoelastic response whereas the absence leads to a lack of viscoelasticity in the solution).

3.4. 1H NMR. The reversible photoisomerization between trans-ACA and cis-ACA was also confirmed by 1H NMR analysis. Figure 4a shows the 1H NMR spectra for 2 mM trans-ACA before and after irradiation. The fresh sample before irradiation showed large peaks due to trans-ACA and small peaks due to cis-ACA, with an area ratio of 13.3 (93% trans and 7% cis). After UV irradiation, the cis-ACA’s peaks grew significantly whereas the trans-ACA’s peaks diminished. The peak area ratio was 0.11 (10% trans and 90% cis). After visible light irradiation, the trans-ACA’s peaks increased considerably and the cis-ACA’s peaks became much smaller. The peak area ratio increased to 2.45 (71% trans and 29% cis). Therefore, ACA reversibly isomerizes between its trans and cis configurations upon UV and visible light irradiation.

Figure 4b shows the 1H NMR spectra for 2 mM trans-ACA in the presence of 3.4 mM OHAC before and after irradiation. ACA peaks shifted from those for pure ACA and were also broadened.52 The fresh sample before irradiation showed large peaks of trans-ACA with weak peaks, if any, from cis-ACA. The peak-area ratio could not be accurately obtained because of interference from the signal as a result of H₂O (or HOD). After UV irradiation, the cis-ACA’s peaks grew significantly whereas the trans-ACA’s peaks diminished. This means that in the presence of surfactant, trans-ACA molecules are also converted to cis-ACA by UV irradiation. After visible light irradiation, the spectrum looks essentially the same as that of the fresh sample. The trans-ACA’s peaks increased considerably whereas the cis-ACA’s peaks became much smaller. This confirms that visible light irradiation converts most cis-ACA to trans-ACA in the presence of surfactant. In summary, ACA reversibly isomerizes, in the presence of OHAC, between its trans and cis configurations upon UV and visible light irradiation. These
results are consistent with those reported elsewhere for the mixture of ACA and the EHAC surfactant.52

To examine the stability of trans-ACA and cis-ACA, 1H NMR spectra of aged samples, stored in the light and also in the dark, were obtained at room temperature. In one experiment, a 2 mM ACA solution with a trans-ACA to cis-ACA ratio of 93:7 did not change when the sample was kept in the dark for 48 h. However, the ratio changed to 70:30 within 24 h in ambient light and remained at this value 48 h after the sample was prepared. In a second experiment, a 2 mM trans-ACA solution was irradiated with UV light to give a trans-ACA to cis-ACA ratio of 15:85. This ratio was maintained for 48 h when the sample was kept in the dark at room temperature, but in ambient light, this ratio changed to 70:30 within 24 h and stayed at this value 48 h after the sample was prepared. Therefore, the ratio of trans-ACA to cis-ACA for both the fresh and UV-treated ACA solutions converged at 70:30 within 24 h of exposure to ambient light at room temperature.

In the presence of OHAC (3.4 mM), the ACA (2 mM) spectra of both freshly prepared and UV-irradiated samples did not change after at least 24 h in the dark. However, the spectra of the two samples converged to identical spectra within 24 h in ambient light. Thus, 1H NMR results showed that the isomerization between trans-ACA and cis-ACA was powered by ambient light at room temperature. Therefore, the properties of 3.4 mM OHAC + 2 mM ACA should be stable in closed recirculation systems, where the solution is not subject to any unintended light.

3.5. Drag Reduction and Heat-Transfer Properties. DR data for the 3.4 mM OHAC + 2 mM trans-ACA solution at temperatures from 5 to 75 °C are shown in Figure 5. At low Re, the solution has a negative %DR, which means that the friction factor was higher than that of water because of the high shear viscosity of the solution at a low shear rate. Generally, the solution has a better DR ability at higher temperature. At 5 °C, no DR is observed for the entire Reynolds number (Re) range. At 15 °C, %DR has a low peak (19%) at a Re of 5000. As temperature increases, the solution shows DR over a wider range of Re. The Re ranges are 6500–14 800, 7500–25 000, 11 000–36 700, and 7000–60 000 at 25, 35, 45, and 55 °C, respectively. The %DR peak value also grows from 45% at 25 °C to 78% at 55 °C. The Re where %DR decreases rapidly is denoted as the critical Re. At this critical Re, the shear stress reaches a critical level that destroys TLMs, resulting in more waterlike turbulent behavior in the flow and also the rapid drop in %DR. When the temperature is increased to 65 and 75 °C, %DR reaches 78 and 80%, respectively, at the highest Re attainable in our flow system.

Figure 6 shows the DR and heat-transfer properties before and after light irradiation at 25, 35, and 45 °C. The %DR is always lower than %HTR in the DR-effective range of Re. They increase together and decrease at the critical Re, as reported by others.18–20 The results demonstrate that UV irradiation turns off both %DR and %HTR in a certain range of Re because it shortens the TLMs as shown by cryo-TEM. In our experiments, %DR and %HTR were only partially reduced because the irradiation did not completely convert trans-ACA to cis-ACA. To destroy the TLMs completely, as observed in the cryo-TEM image (Figure 3b), a higher-powered UV lamp with wavelength narrowed to near 321 nm should be used to irradiate large quantities of solution for a longer period of time.

The range of Re in which %DR and %HTR are both reduced is referred to as the responsive range of Re. Figure 6 shows that this responsive range of Re is widest at 45 °C, indicating that the effect of light irradiation is more pronounced at higher temperatures. This offers a wider responsive range of Re to manipulate. Because of the limitations of our apparatus, no heat-transfer experiments were performed above 45 °C, but a wider span is expected at temperatures above 45 °C as the solution is effectively drag-reducing up to 75 °C. Although the critical Re of UV-treated solution did not change much as the temperature increased from 25 to 45 °C, the critical Re of fresh solution and restored solution increased significantly from ≈13 000 to ≈30 000. This significant increase might be due to the increased flexibility of the TLMs and higher reassembly rates of TLMs at higher temperatures, but for the UV-treated solution, these two factors have little effect on the shorter micelles. Visible light irradiation restored %DR and %HTR to almost the
Visible light irradiation of the UV-irradiated solution restores its drag-reducing capability and reduces its heat-transfer capability at the same time. This visible light irradiation can be applied to the exit of the heat exchanger so that DR is restored. The reversible changes stem from the reversible photoisomerization between trans-ACA and cis-ACA, as confirmed by UV−vis and 1H NMR spectra. The 1H NMR spectra also suggested that trans-ACA assembles with OHAC to form aggregates. It is possible that cis-ACA also forms aggregates with OHAC, but these clearly have different properties than those formed between trans-ACA and OHAC. Long TLMs were observed in cryo-TEM images for both the fresh solution and the restored solution. Significantly shortened micelles were found in small quantities after UV irradiation. The changes in micelles were also reflected in reversible changes in rheological properties: shear viscosity and Nt. Thus, this study highlights the potential of switching on the EHT mode of a photoresponsive fluid at the inlet of a heat exchanger and switching on the DR mode at the outlet in a recirculating system. This study also introduces a potential application for other stimuli-responsive smart fluids.

4. CONCLUSIONS

In district heating and cooling systems, it is desirable to use a smart fluid whose physical properties, such as the extent of drag reduction and heat-transfer capability, can be controlled by external stimuli. The 3.4 mM OHAC + 2 mM trans-ACA solution meets this need. This solution can be tuned to have drag-reducing capability during flow and good heat-transfer capability at the heat exchanger. UV irradiation turns off its DR and simultaneously enhances its heat-transfer capability over a range of Re. UV irradiation could be applied at the entrance of a heat exchanger so that the heat exchanger will perform better.

Figure 6. DR and HTR vs Reynolds number for an aqueous solution of 3.4 mM OHAC + 2 mM trans-ACA after irradiation at different temperatures. (a) 25, (b), 35, and (c) 45 °C. Legend: ◻, %HTR of a fresh sample; ■, %DR of a fresh sample; red ◼, %HTR of UV-irradiated sample; red ◻, %DR of UV-irradiated sample; blue △, %HTR of a sample after UV and visible light irradiation; blue ▲, %DR of a sample after UV and visible light irradiation.

same level. The critical Re at each temperature was also restored to approximately the same value as the fresh solution. The small differences in critical Re between the fresh solution and the visible-light-irradiated solution were probably caused by the incomplete isomerization of cis-ACA to trans-ACA. Longer and more intense irradiation should enable a full recovery of the critical Re.

In short, DR was suppressed and heat transfer was enhanced for OHAC/ACA solution by UV irradiation and were reversed by visible light irradiation. Thus, this drag-reducing solution could be used in suitably designed district heating and cooling systems both to reduce pumping-energy requirements and to maintain effective heat transfer in the heat exchangers.

REFERENCES

AUTHOR INFORMATION

Corresponding Author

*E-mail: zakin.1@osu.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (NSF CBET-0933295) and a Presidential Fellowship from The Ohio State University to H.S. We thank Prof. Robert S. Brodkey in the Department of Chemical and Biomolecular Engineering at The Ohio State University for providing the UV lamp. The cryo-TEM work was performed at the Technion Laboratory for Electron Microscopy of Soft Matter, supported by the Technion Russell Berrie Nanotechnology Institute (RBNI).

107 dx.doi.org/10.1021/la304001r | Langmuir 2013, 29, 102−109
Langmuir

